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Abstract 

Improvements in the shape determination method 
based on multipole expansion [Stuhrmann (1970), Z. 
Phys. Chem. (Frankfurt am Main), 72, 177-198] are 
described. Fast algorithms for evaluating shape scat- 
tering from the multiple coefficients are developed. 
The relationship between the resolution in real and 
reciprocal space is established. The improved tech- 
nique is verified by means of model calculations. It 
is shown that the low-resolution shape estimation can 
be performed as a straightforward procedure. Shape 
refinement at higher resolution is ambiguous; a 
variety of shapes can be generated which fit the given 
intensity curve neatly. A criterion is given to select 
the most plausible solution in higher-resolution 
studies. 

1. Introduction 

The possibility to extract structural information from 
small-angle scattering (SAS) data depends to a large 
extent on the nature of the system under investigation. 
SAS methods can be applied to the study of a wide 
range of non-crystalline objects and some general 
parameters characterizing the sample can be evalu- 
ated directly from the experimental data (Feigin & 
Svergun, 1987). One of the most favorable cases is 
that of monodisperso systems consisting of randomly 
oriented particles, of which dilute solutions of bio- 
logical macromolecules are good practical examples. 
In this case the SAS intensity is proportional to the 
scattering from a particle averaged over all orienta- 
tions and this allows one readily to obtain some 
geometrical and physico-chemical parameters of the 
particle from the scattering curve. 

As a result of the spherical averaging of the scatter- 
ing data a considerable amount of information is lost 
and the relationship between the particle structure 
and the SAS intensity is not unequivocal. Restrictions 
must be imposed on possible solutions in order to 
extract information about the three-dimensional par- 
ticle structure from the one-dimensional SAS curve. 
The assumption that one is dealing with homogeneous 
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particles for which only the shape is to be determined 
is especially important in practice. The SAS intensity 
corresponding to the shape scattering can be obtained 
experimentally using contrast variation methods 
(Stuhrmann & Kirste, 1965). 

Simple approximations (e.g. three-axial ellipsoids, 
prisms etc.) have been used for many years to charac- 
terize the particle shape (see, for example, Glatter & 
Kratky, 1982). The problem of more detailed shape 
description is normally handled in terms of models. 
Different approaches have been proposed to evaluate 
the SAS curves from models (Rolbin, Kayushina, 
Feigin & Schedrin, 1973; Miiller, Damaschun & 
HiJbner, 1979; Glatter, 1980; Miiller, 1983). In this 
paper we deal with direct shape determination pro- 
cedures based on the multipole expansion. 

2. Shape determination using multipole expansion 

First we shall briefly outline the formalism of the 
shape determination using multipole expansion. The 
approach is described in detail in the original papers 
(Stuhrmann, 1970a, b). 

A three-dimensional function p (r) (particle density 
distribution) can be represented as a series 

L I 

p(r)~--pL(r)= Y. ~, p,,,,(r) Yt,,(to), (1) 
/ = 0  m = - I  

where (r, to) = (r, 0, ~o) are spherical coordinates, 

pt,,(r) = ~ p(r) Y*,,(to) dto (2) 

are the radial functions and Ytm(~o) are spherical 
harmonics. Here the truncation value L describes the 
resolution, i.e. accuracy of the representation of the 
particle s t r u c t u r e  [pL(r)  --~ p(r) when L ~  oo]. With this 
expansion the particle SAS intensity is expressed as 
(Harrison, 1969; Stuhrmann, 1970a) 

L 1 

I ( s ) =  E E IA,m(s)l 2, (3) 
I = O  m = - - l  

where s is the modulus of the scattering vector s 
[ s=(47r /A)  sin 0, h is the wavelength and 20 is the 
scattering angle] and 

oo 

A,,,(s)=i'(2/Tr) '/2 ~ p,m(r)j,(sr)r2dr (4) 
0 
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are the Hankel transforms of the radial functions 
where j t (sr)  are spherical Bessel functions. 

The structure of a wide variety of homogeneous 
particles can be described with the help of the angular 
shape function F(w) as 

p(r) = {10 0<- r <  F(w) 
r > F(w) .  (5) 

This function can also be developed into the series 

L I 

F ( w ) =  Z E f,.Y,,.(oJ) (6) 
I = 0  m = - I  

where the multipole coefficients are complex numbers 

f,,, = J F ( w )  Y*,,,(w) do.,. (7) 

The set of f , .  coefficients describes the shape of the 
particle at the given resolution. Representing the 
spherical Bessel function as a power series 

O(3 

j t ( s r )=  • [ ( - 1 ) P / 2 P p ! [ 2 ( l + p ) + l ] ! ! ] ( s r )  1+2p 
p = O  

oc 

= ~ d,t,(sr) '+2p (8) 
p = O  

and substituting this series into (4), one obtains 
(Stuhrmann, 1970b) 

A~,,,(s) = i~(2/ rr) '/2 
O(3 

x ~ tr~t-tpJr(t+2p+3)/tl+2p+3)] / t (9) 
p = 0  

where - 

f(q) YL(w) dw. (10) ,~ =~ [F(w)]  (q) 

Using (3), the SAS intensity is represented as a power 
series 

oo 

l ( s ) =  Z sZ"a,, 
n = 0  

oc L n - I I 

= 2 s ~ ° 2  Y~ Y~ 
n = 0  1 = 0  p = 0  m = - l  

d, ¢(k, 4 " ( k 2 ) / k l  k 2 ,  ipJ lrn ) d l ,  n - l - p J l m  / 

(11) 

k ~ = l + 2 p + 3 ,  k z = 2 n - l - 2 p + 3 .  Therefore, the 
coefficients of the power series of the SAS intensity 
(which can be extracted from the experimental data) 
are expressed as a nonlinear combination of the multi- 
pole coefficients jt,,,¢(q) of the shape function. These 
relationships can be used to find the shape by 
minimizing the deviations between the observed and 
calculated coefficients a,. 

This method was shown to be useful for low-resol- 
ution shape determination when using only the few 
first terms in series (11) and, correspondingly, a 
restricted number of multipoles in expansion (6). In 
particular, a model of the 50S ribosomal subunit at 
resolution up to L = 3  was proposed (Stuhrmann, 
Koch, Parfait, Haas, Ibel & Crichton, 1977). 

3. New features 

The formalism above did not find wide application, 
mainly due to difficulties in its practical implementa- 
tion and, in particular, the severe problem of evalu- 
ation of the coefficients f ~ )  for higher ! and q values. 
The higher l and q, the less reliable the numerical 
integration in (10). Series ( 11 ) becomes divergent with 
increasing s and its truncation restricts the 
possibilities of representing the SAS intensity. In 
practice one can only use about a dozen coefficients 
and terms in the power series. This means that in this 
form the method is restricted to a resolution not better 
than L = 3. Below we present improvements in the 
procedure which significantly increase the reliability 
of the technique and allow one to move to higher- 
resolution studies. 

Let us substitute in (10) F(q)(w)= F(w)F(q-I)(w) 
and represent F ( o )  according to (6): 

L k 

f ( q ) = I [ F ( w ) ]  q-') 1,. ~. Z fk, Yk,(W) Y*,.(w) dw. 
k = 0  t = - k  

(12) 

Using the following formula for the product of two 
spherical harmonics (Edmonds,  1957) 

Y,m (.O ) Yk, (.O ) 
I + k  

= X 
p=lt-kl 

where 

[ (2 l+  1)(2p + 1)(2k + 1)/47r] l/z 

0 m t - m - t  p_m_,(w)  
(131 

t - - m - - t  

are 3j Wigner symbols, integrating over to and taking 
into account the orthogonal properties of spherical 
harmonics, one obtains the following recurrence 
formula: 

L k + l  

f l ~ ) = ( - 1 )  m 2 2 [ ( 2 / + 1 ) ( 2 k + 1 )  
k=O p=lk-/[ 

k 0') 0 

× JkUp, . , - , \  . (14) 
t=-k m t m - t  

This formula allows one to evaluate the coefficients 
f¢q) for q > 1 without integration. Im 

The representation of the SAS intensity is much 
simplified by first evaluating the amplitudes A , , ( s ) .  
The convergence of series (9) is obviously twice as 
fast as that of series (11), that is, twice as large an 
angular region can be taken into account without 
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producing numerical instability. The amplitudes hav- 
ing been evaluated, the intensity can be summed 
according to (3). The functional to be minimized then 
has the form 

$ m a x  

, P =  g,[{f,m}] = ~ i l o xp (S ) -  lmod(S)lW(s) ds 
Stain )' 
X /exp(S) W(s) ds (15) 

~ '  Stain 

where the fitting region and the choice of the weight- 
ing function W(s) depend on the resolution which 
one can obtain, the accuracy of the experiment etc. 

With these improvements both higher harmonics 
and a wide angular range of the SAS intensity curve 
can be taken into account, in principle allowing 
higher-resolution studies. 

4. Resolution in real and reciprocal space 

To show the possibilities of the improved technique, 
a series of model calculations has been performed. 
We plan to apply the shape determination in the study 
of the ribosome structure, therefore the two electron 
microscope models of the 50S ribosomal subparticle 
are used as model objects. One of them has been 
proposed by Lake (1976), the other by Yonath, 
Leonard & Wittmann (1987). Shape coefficients have 
been calculated using the solid model in the first case 
and the cross sections of the model in the second case 
(Yonath, 1989). The models constructed from the f ~  
sets with a resolution up to L =  7 are presented in 
Figs. l (a ) ,  (b); the corresponding SAS curves are 
shown in Fig. l(c)  (they are presented in the angular 
region where the shape scattering curve can be 
reliably determined in practice). 

First, it is necessary to establish the relationship 
between the resolutions in real and reciprocal space. 
The former is determined by the maximum number 
of harmonics L, the latter by the maximum momen- 
tum transfer Smax- A simple estimation of the resol- 
utions can be made as follows. Let Ro be an average 
particle radius (say the radius of the sphere with the 
same volume). Then the resolution provided by the 
lth harmonic is 27rRo/(l+ 1). On the other hand, the 
Bragg resolution is 2zr/s. Comparing the two 
expressions, one obtains that, for a multipole resol- 
ution L, the portion of the scattering curve up to at 
least Smax = (L + 1)/Ro must be available. 

A similar estimation follows from the sampling 
theorem (Shannon & Weaver, 1949; Taupin &Luzzati, 
1982) if one considers each new term in the sum over 
l in series (6) as an independent parameter: S m a  x = 

7r(L+I) /D . . . .  Dma x being the maximum particle 
diameter. It is worth noting here that the number of 
ft~ coefficients describing the particle shape is, of 
course, much higher than L +  1, but they cannot be 

considered as ' independent  parameters' .  For 
example, it is easily shown that 

L L I 

SEF(w)]2dw = f_., F ~ =  T~ ,T_, IJ;ml 2 (16) 
l = 0  I = 0  m = - - I  

and, therefore, each partial sum F~ is conserved under 
arbitrary rotations of the particle. 

The estimations are illustrated in Figs. 2(a),  (b), 
where the relative multiple contributions 

I 

i , (s)= I , (s) / l (s);  ll(S) = E A,,,(s) 2 (17) 
m = - I  

are shown for the two models (the R0 values are 86.4 
and 84.9 ~ for Lake's and Yonath's models, respec- 
tively). One can see that the angular range up to 
s =- 0.06 A-~ contains the main information about the 
harmonics with l<-3; to improve the resolution up 
to L = 5, the region up to s --- 0.09/~-1 has to be taken 
into account. On the other hand, higher harmonics 
play no significant role at lower momentum transfers: 
for example, the partial intensity IT(S) is negligibly 
small for s < 0.06/~,-]. 

The parameter Ro is also important as a scale factor 
for numerical procedures. The transformation r ~  

" 2-? ~ ~,,-, i',--~i 

5O 4 

(a) (b) 

,o5 F 

log I 

:.=~-:- : . . , . .  ? 
- .  i - -  (1) 

" \ \  L \ _.__i (2) 

\ 
, \ .  

\ .  -. 
~... 

, "~.  

" " x ~ . . .  

~.~ 

9.5 . . . . . . .  l . . . . . . . .  a_ _ 
0 0.02 0.04 

a. ~-1 

(c) 

0.06 0 .08 0.1 

Fig. 1. The models of (a) Lake and (b) Yonath up to the resolution 
of L=7 and (c) their SAS curves: curve (1) corresponds to (a), 
(2) to (b). 
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r~ Ro, s ~ sRo has to be made in order to avoid round- 
ing errors while evaluating f~ q~ and A,,,(s) according 
to (14) and (9). With such scaling, scattering curves 
up to sRo= 13-14 at the resolution L = 7 - 8  can be 
evaluated, which is sufficient for most practical pur- 
poses. Note that with the representation (10)-(11) 
only the range sRo<7-8 at the resolution L=  3-4 
could be covered. 

5. Model  calculations at low resolution 

The algorithm presented above was implemented in 
a Fortran program package. For minimizing func- 
tional (15), the optimization program OPTIS, 
developed at the Institute of Crystallography, USSR 
Academy of Sciences, was used. All the model calcu- 
lations were performed on IBM-PC and VAX com- 
puters. 

First, the method was tested under ideal conditions. 
That is, the model scattering curves were evaluated 
according to (9) and (3) using the series up to L = 3 
and the shape functions were restored using the same 
resolution. 

i I . r e l a t i v e  
1! . . . . . . . . . . . . . . . . .  - 

\ 
\,\ 

,, 5 
0 . 8  . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . .  

\. s-R 
', 0 . . . . .  ,J',~ 

0.6 : (11 \ 

• - (2) \ / '  '\~ 
(3) ~[ ~, 

- (51 / ', '\ ~%~.  

--~:- (7) ~ ~\ 

0 0.02 0.04 0.06 0.08 0.1 
S. ~-1 

(a) 

~1' r e l a t i v e  
-_~ 

\ 
0.8~- \ 5 

. . . . . . . . . . . . . .  ~ l 
i , a-R 0 

. . . . . .  o.°., : :, 
i - - (31 ! ~ ~\ 

o . 4 1  - -  ( 4 1  

o2 . .  1 7 ~  ((~11 . . ~  @c~'C ..t- 

" I - i ( -  (7) 

~ ~ -  
0 0.02 0.04 0.06 0.08 0.1 

s, j~-I 

(b) 

Fig. 2. Relative multipole contributions to the total scattering 
intensity for (a) Lake's and (b) Yonath's models. Curves (1)-(8) 
correspond to l = 0-7. 

The models up to a resolution of L = 3 are shown 
in Figs. 3(a), (b); the corresponding scattering curves 
are given in Figs. 4(a), (b). One can see that the 
shapes as well as the scattering curves already differ 
significantly at this resolution. Our aim was to show 
that the method is able to distinguish between the 
two models and to restore the shape functions without 
any additional information. 

As usual for minimization techniques, the problems 
of initial approximation, the type of the functional 
and the method of minimization arise. Various calcu- 
lations have been made and the most effective shape 
restoration procedure can be formulated as follows: 

(i) A simple but reasonable model can be taken as 
the initial approximation. We found that it is sufficient 
to use a three-axial ellipsoid approximation, where 

~o~ 
t 

(a) (b) 

(c) (d) 

(e) 

Fig. 3. The models o f ( a )  Lake and (b) Yonath up to the resolution 
of L = 3 and their restored shapes, (c) and (d), respectively. The 
shape (e) is obtained when restoring Lake's model starting from 
a sphere. 
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the half-axes are calculated so as to fit the three 
invariants of  the SAS intensity curve (radius of gy- 
ration, volume, maximum diameter). 

(ii) The most natural way of comparing the scatter- 
ing curves via these Porod plots is also the best. That 
is, the weighting function W(s)  = s 2 is to be taken in 
functional (15). 

(iii) The combination of variable metrics and 
downhill simplex methods of optimization (Gill, 
Murray & Wright, 1981) proved to be a reliable and 
sufficiently fast minimization procedure. 

The results of the model calculations (restored 
structures and restored scattering curves) are shown 
in Figs. 3 and 4. In both cases the starting point was 
a three-axial ellipsoid with the axial ratio a : b : c  = 
0.75:1 : 1.4; the angular range 0 < s < 0 - 0 6 / ~ , - I  was 
used in functional (15). 

It is worth noting here that the coefficients ¢(q) Jim are 
directly related to some important structural par- 
ameters of the particle, namely: 

particle volume: V = (4~r)~12f~)13; 
D 2  _ a,c(5)/~tC(3). radius of  gyration: , , g - - u  oo/-u oo, 

log I 

i-<1> ] 
12.5 - ~ .  " (2) 

\ L_ (31 
\ 

11.5 ' ~ t  ,, 

1 0 . 5  ' " ' ~ " ~ ~  

i 

"% . . . . .  0-0-7 . . . . .  o%;-- ..... 0.%7- ....... o.o~ . . . . . .  ~1 
$ ,  ~ "  

(a) 

log I 
i 
[ .......... .._ 

12.5 I " "  . . .  

I 

11.51 

9.5: . . . . . . . . .  
0 0.02 

i . . . . . . . . .  

; " " (1) 
, • (2) 

-. . . . . . .  
\ \, ,\ 

\ \ 
\ 

\ 

\ \  
\ 

\ 
_ ~  . . . . . . . . .  

0 . 0 4  0 . 0 8  0 . 0 8  0 . 1  

s .  ~ - i  

(b) 

Fig. 4. (a) Scattering curve from Lake's model up to L = 3 (1) and 
its approximations by the models shown in Fig. 3(c) (2) 
and Fig. 3(e) (3); (b) scattering curve from Yonath's model 
up to L = 3 (1) and its approximation by the model shown in 
Fig. 3(d) (2). 

coordinates of the center of mass: 

ro = ( - 6 1 / 2  Re { f ~ ) } / 4 f ~  ) , 61/2 Im { f ( l l ) } /4 f~ ) , 

3 1/2¢(4)/A¢(3)~ 
J l O / ~ J  O0 1. 

It is possible to control these parameters during 
the minimization procedure. In particular, to keep 
the particle reasonably close to the origin, the term 
/-tirol (H" "" 10-4Ro) has been added to the functional 
(15). No restrictions were, however, imposed on the 
particle orientation, although this could be done by 
fixing some fire's. For comparison with the initial 
shapes, the resulting structures were appropriately 
rotated. The rotation of  the structure described by a 
set of J~,,, coefficients by the Euler angles a,/3, 3' leads 
to the new set gt,, which can be easily calculated using 
the relation 

I 

g,,,,= X ~(k').,,(Ot,/3, "Y)fJk (18) 
k=-I 

(t) (a,/3, 3/) are matrix elements of the rota- where ~ km 

tional operator (Edmonds,  1957). 
The results are shown in Figs. 3 and 4. The minima 

of the functional are 2 x 10 -a for Lake's model and 
9 x 10 -4 for Yonath's model. The scattering curves 
are well restored even beyond the angular region used. 
The restoration of the models themselves is also satis- 
factory. The figure of merit for comparison, according 
to (16), is 

~ rrexp rmod12],/2 

,~=o , ~ = _ t J , , , - - J , m J  I --Z-'-- ? - - - - - ~  

ML: i~O~=_l[f?~p]2 ] 

= I 2 do, (19)  

Here exp refers to the model used for simulations, 
rood to the restored structure. In the present case, 
M3 = 0.067 for Lake's model and 0.073 for Yonath's 
model. 

Similar results can be obtained starting with other 
reasonable approximations. Fig. 3 illustrates an 
average result rather than the best restoration. In 
particular, the shapes are better restored if one 
increases Sm,x (the restoration is almost perfect for 
Smax = 0" 1 ~ - l ) .  However, we tried to keep the range 
as small as possible taking into account further prob- 
lems with resolution. 

Starting with a less-reasonable initial shape one 
always runs the risk of  being trapped in a local 
minimum of the functional which is remote from the 
true solution. This is illustrated in Fig. 3(e). This 
shape, which is a poor approximation of Lake's model 
(M3 = 0.193), is obtained when starting from a sphere. 
The value of the functional is much higher (7 x 10-3), 
but the fit in the region s < 0.06 ,~-1 is still acceptable 
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[see curve (3) in Fig. 4(a)] ,  especially taking into 
account possible errors in the experimental data. Indi- 
cations that this solution is incorrect are found in the 
outer part of the scattering curve. 

6. Termination effects and refinement 

The previous results prove that the method can restore 
simple (but non-trivial) shape functions using a 
limited range of momentum transfer under ' ideal '  
conditions. That is, limited resolution of the multipole 
expansion did not introduce any errors. In reality, 
the scattering curves contain an infinite number of 
harmonics and the resolution effects have to be taken 
into account for the method to be of practical use. 

The difficulties arising from the resolution effects 
are illustrated in Fig. 5, where the scattering curve of 
Lake's model without truncation [curve (1), the same 
as curve (1) in Fig. l(c)]  is shown together with the 
one truncated at L = 3 [curve (2), the same as curve 
(1) in Fig. 4(a)].  The curves differ significantly and 
application of the same procedure as described above 
results in curve (3), which is in poor agreement with 
both ' truncated'  and total intensities. The restored 
structure (figure of merit M 3 = 0" 139) deteriorates by 
the artificial increase of the multipoles with l = 2 and 
especially ! = 3, resulting from the contributions of 
all higher multipoles (termination effects). 

A trivial way to overcome this problem would be 
to take into account as many multipoles as possible 
in order to reduce the termination effects. For globular 
structures, the convergence of series (3) is fast and 
the resolution up to, say, L = 5-6 is quite sufficient 
for experimentally measurable ranges of momentum 
transfer. This approach is, however, not acceptable 
from the numerical point of view. The number o f f , ,  
coefficients to be adjusted is already high for L = 3 
(17 coefficients); it increases to 36 for L = 5  and to 
64 for L = 7. Moreover, the higher harmonics overlap 

log I 

12.5 ~ ~ , . ~  
( ' 0  

• (2) 

- Z .  (3) 

• (4) 

. . . . . . . . . . . .  .:_ . . . . . . . . . . . . . . . . . . . . . .  , 
9 5 0  0.02 0.04 0.06 0.08 0.1 

s, /~ " 

Fig. 5. Scattering curve from Lake's model without truncation of 
the multipole expansion (1); truncated at L = 3  (2); obtained 
from the shape restored using the truncated at L = 3 multipole 
expansion and curve (1), Smax=0"06 7k -I (3); the same as (3) 
but the 'sign penalty' SP = 3 is used (4). 

Table 1. Part ic le  p a r a m e t e r s  as  f u n c t i o n s  o f  reso lu t ion  

Lake's model Yonath's model 

L Rg (•) V (106 A 3) Oma x (/Yk) R~ (/1.) V (106 A 3) Omax (A) 

3 70.8 2.58 205 67.1 2-45 194 
5 73.9 2.67 231 68.8 2.52 206 
7 75.1 2.70 239 70.2 2.57 219 

to a large extent in their contributions to the scattering 
curve (see Fig. 2). Minimization of such a functional 
seems to be an unrealistic task. 

A realistic approach would be to increase the resol- 
ution step by step, that is, to fit first an inner portion 
of the SAS curve with lower multipoles, then to add 
higher harmonics taking into account a wider angular 
range etc. Since at each step the termination effects 
can lead to an overestimate of higher harmonics, the 
tim's could be modified by a damping factor, e.g. 
J~,,-~f,, e x p  [ - v 2 ( l / L )  2] before the next step. 

There is also a possibility of programming the 
expectation of termination effects into the functional. 
To do this, let us consider qualitatively the differences 
between ' truncated'  and total intensities. Obviously, 
for higher angles the ' truncated'  intensity is lower 
than the total one as a result of the missing higher 
multipoles. This is also valid for the scattering curve 
very close to the origin since the radius of gyration 
and in particular the maximum diameter increase 
markedly with improving resolution. The particle 
volume also increases with resolution, but not as 
much as  Dmax (see Table 1). One can therefore expect 
that in the central part of the scattering curve the 
' truncated'  intensity will be larger than the total one. 

This behavior can be observed for the two models 
used (Fig. 64). The s values where the sign of the 
difference changes correspond approximately to the 
maximum of the Porod plot (s~) and the end of its 
steep slope (s2), see Fig.  6(b). Model calculations 
with other bodies show similar features. 

This can be used in the minimization process by 
introducing a 'sign' function 

-10 O < s < s ,  - 3 s ,  s > s 2 + 6 s  

P(  s ) = s, - 6s  <- s <- s~ + 6s, 

s2 - 6s <- s <- s2 + 6s (20) 

+1 s~ + 6s < s < s 2 -  6s 

which describes the expected sign of the difference 
l exp (S ) - - lmod(S) .  Here 6s > 0 is introduced to show 
that s, and s2 are not known exactly but only esti- 
mated. If the sign of the difference does not coincide 
with P ( s )  and P ( s )  ~ O, the difference is to be multi- 
plied by a factor S P  > - 1 ('sign penalty'). The value 
of S P  can be taken as 2-3 at lower resolution and 
gradually decreased to unity with improving resol- 
ution. 

The resulting curve obtained at L = 3  for Lake's 
model with S P  = 3 is presented in Fig. 6 [curve (4)]. 
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It is much closer to the ' t runcated'  curve. The figure 
of merit is M3 = 0.066 allowing further refinement. 

The procedure using the 'sign penalty'  function has 
been applied for the shape restoration of the two 
models. In both cases we started with a resolution 
L = 3 and progressively added higher harmonics. The 
restoration for Lake's model at L = 5 is compared to 
the initial model at the same resolution in Figs. 
7(a),  (c). The figure of merit is M~ =0.100, whereas 
the M3 value is only 0.047, indicating that most of 
the strongest contribution to the disagreement comes 
from the higher multipoles. Results of the restoration 
procedure for the SAS curve corresponding to 
Yonath's model are shown in Figs. 7(b), (d) (M3 = 
0-075, Ms=0-147) .  It is worth noting that all the 
minimization conditions were exactly the same for 
both cases. The shape restoration at this resolution 
was performed as a straightforward procedure, only 
the scattering curves were different (at L = 5 the range 
up to Sm~ =0"08 ,~-~ is used). The minima of the 
functional are 4 x 10 -3 and 7 x 10 -3,  respectively. 

Further refinement is possible but more ambiguous. 
Use of more multipoles yields a perfect fit to the 
scattering data, but not necessarily a better shape 
restoration. At the resolution L = 7 one can generate 
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Fig. 6. (a) Truncated (1) and (3) and total (2) and (4) intensities 
from Lake's and Yonath's models,  respectively; (b) Porod plots 
[total curves: (1) Lake, (2) Yonath] and the sign function (3). 
The points where the difference changes sign are marked. 

different shapes corresponding to the local minima 
of the functional by varying the damping factor, fixing 
or freeing lower multipoles etc. The possibility to 
choose the best model still exists, provided the scatter- 
ing curve beyond the fitting region is available. An 
example is shown in Fig. 8. Here the scattering curves 
from two restorations of  Lake's model are presented; 
curve (2) corresponds to the shape with M7 =0.125, 
(3) to the one with M7 = 0.104. The fit in the range 
0 < s < 0 . 1  A-~ (used in the minimizing functional) 
is practically the same for the two curves (3 x 10 -3 
and 2 x 10-3) .  It is, however, seen that curve(3), corre- 
sponding to the better figure of merit, fits the outer 
part of the scattering curve (cf. Fig. 4a) much better. 
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Fig. 7. Models of (a) Lake and (b) Yonath up to a resolution of 
L = 5 and their restored shapes, (c) and (d),  respectively. 

l o g  I 
1 3 ,  

i 

• . - -  (1) ! 

t2i ~ ,  ' ( 2 '  I 
4 .  (3 }  

~,~ . . . . . .  J 
'x \  

...., 

~ _ _  ..~ t o :  

' , .  . . . . . . . .  

9 - -  - -  ~ . . . . . . . . . . . . .  a _ _ _  
o 0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8  0.1 0.12 0.14 

s. ,~ '~  

Fig. 8. Scattering curve from Lake's model (1) and two restored 
models with L = 7 ,  s in ,x=0 .1A -~, (2) and (3). 
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The agreement of the scattering curve beyond the 
fit region can serve as a criterion to select the most 
plausible solution. The shape restorations thus 
obtained are presented in Fig. 9 (the figures of merit 
are 0.104 for Lake's model and 0.165 for Yonath's 
model). In both cases the angular range up to Sma x = 

0.1/~-~ was used for minimizing the functional and 
the range 0.1 < s < 0-15 A-~ for the choice of the 'best' 
solution. 

Concluding remarks 

The improvements presented above offer the possibil- 
ity of more extensive practical use of the shape deter- 
mination method. The calculations with model bodies 
enabled the development of a strategy for shape 
refinement allowing shape restoration with reason- 
able resolution. 

Some limitations of the technique should, however, 
also be stressed. Firstly, the method, as well as the 
multipole expansion itself, is applied mostly to 
globular particles. The shape of such particles can 
always be described with (5) and the fi,, coefficients 
in (6) decrease rapidly with increasing index I. One 
can hardly expect successful results dealing with 
essentially anisometric objects. Secondly, the solution 
at higher resolution is by no means unique, especially 
if one takes into account the accuracy with which the 
shape scattering curves can be obtained in practice. 
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Fig. 9. Models of (a) Lake and (b) Yonath up to a resolution of 
L = 7 and their best restorations, (c) and (a),  respectively. 

The ability of the technique to fit the SAS curves 
neatly using a sufficiently large number of multipoles 
may become a shortcoming because the contribution 
from the internal particle structure may not be totally 
excluded from the experimentally obtained 'shape'  
scattering curves [for example, due to H-D exchange 
in neutron contrast variation experiments, see 
Stuhrmann (1975) or Witz (1983)]. Moreover, due to 
the sharp increase of the number of coefficients fir, 
with the number of harmonics, L = 6-7 represents the 
upper limit of the resolution which one can hope to 
obtain, unless some additional information, for 
example about particle symmetry, is available. The 
refinement at higher resolution is also a time- 
consuming procedure: one refinement cycle at L = 7 
requires approximately 12 h CPU time using a VAX 
6000-410 computer. 

In general, the shape determination with resolution 
up to L = 3-5 can be performed in a straightforward 
manner. The method is sufficiently sensitive to distin- 
guish between the lower-order multipoles. Further 
refinement, however, is a difficult procedure. It is 
preferable not to attempt to fit the SAS curve in the 
complete available range of momentum transfer, but 
to use the tail portion of the curve for controlling the 
solution, even at the expense of resolution. 
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50S ribosomal subunit and to Dr M. H. J. Koch for 
valuable comments on the manuscript. They are grate- 
ful to Drs V. Volkov and V. Bekhterev (Institute of 
Crystallography, USSR Academy of Sciences) for 
providing the original source code of the program 
package OPTIS and help in computer graphics, 
respectively. One of the authors (DS) is grateful for 
the support which he received from the GKSS 
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Abstract 

The quality of an E map is usually affected by system- 
atic and /o r  random phase errors, by amplitude 
truncation effects in the series representation of the 
electron density, by the experimental uncertainty in 
the estimation of I EI and by the intrinsic nature of 
the Fourier coefficients use~t (i.e. the E's).  It is shown 
that simple supplemental calculations can improve 
the quality of an E map. Large molecular fragments 
can often be localized in the new map even when the 
original one is not easily interpretable. 

1. Introduction 

Usually a direct-methods procedure ends with one or 
more sets of approximated phases with which E maps 
are computed. The chemical significance of any trial 
solution is checked via atomic connectivity tables. 
Often one or more chemically sound fragments are 
well localized: the complete structure is then obtained 
by traditional least-squares and Fourier techniques. 
Sometimes a clear solution is not obtained: the map 
is uninterpretable because some atoms are occasion- 
ally missed or ghost peaks are present or the molecular 
geometry is distorted. But even in these cases a post 
mortem analysis of the structure may reveal the pres- 
ence of correctly positioned atoms or fragments. 
Unfortunately, if such atoms or fragments were not 
a priori recognized in the E map, a procedure devoted 
to recovering the total from a partial structure (Karle, 
1970; Beurskens, Prick, Doesburg, & Gould, 1979; 
Giacovazzo, 1983; Burla, Cascarano, Fares, 
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Giacovazzo, Polidori & Spagna, 1989) would not be 
readily applicable. In this context it is of crucial 
importance to have a procedure which, from a tradi- 
tional E map, is able to obtain a new more interpret- 
able Fourier map. 

The quality of a map depends on several factors 
among which the following three play a prominent 
role: 

(a) The phase errors. In most cases these are 
unavoidable: large random errors can be tolerated 
without great loss of structural information in the E 
map while systematic errors have greater destructive 
effects (Silva & Viterbo, 1980). 

( b ) Amplitude truncation effects in the series rep- 
resentation of the electron density. Traditional direct 
methods do not phase reflections under the minimum 
threshold value ETr"~ 1.2: in most of the practical 
applications ETr lies in the range 1.30-1.50. If phases 
are determined with sufficient accuracy the amplitude 
truncation effects are not really harmful (this is a 
necessary condition for the general success of direct 
methods). However, if this effect is associated with 
phase errors the final result is often destructive. A 
classical example is structures suffering from pseudo- 
translational symmetry: if no special action is under- 
taken the reflections actively used in the phasing 
process coincide with substructure reflections. Even 
when these reflections are accurately phased, and that 
it is not the rule, the information on the superstructure 
is completely lost in the E map. 

( c) The Fourier coefficients used for calculating the 
map. It is a traditional practice to use E coefficients 
at the conclusion of a phasing process: they produce 
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